Gleason’s Theorem for non-separable Hilbert spaces: Extended abstract

نویسنده

  • R. M. Solovay
چکیده

The probelm of generalizing Gleason’s theorem to the non separable case arose in correspondence with Paul Chernoff. I am very grateful to him for suggesting this charming problem to me. Let H be a Hilbert space. The coefficient field K of H can be either the reals or the complexes. We let P(H) denote the collection of all closed subspaces of H. A Gleason measure on H is a map μ : P(H) → [0, 1] satisfying the following conditions:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extension theorem for finite positive measures on surfaces of finite‎ ‎dimensional unit balls in Hilbert spaces

A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...

متن کامل

Laboratory Games and Quantum Behaviour: The Normal Form with a Separable State Space

The subjective expected utility (SEU) criterion is formulated for a particular four-person “laboratory game” that a Bayesian rational decision maker plays with Nature, Chance, and an Experimenter who influences what quantum behaviour is observable by choosing an orthonormal basis in a separable complex Hilbert space of latent variables. Nature chooses a state in this basis, along with an observ...

متن کامل

An Extension of Gleason’s Theorem for Quantum Computation

We develop a synthesis of Turing’s paradigm of computation and von Neumann’s quantum logic to serve as a model for quantum computation with recursion, such that potentially non-terminating computation can take place, as in a quantum Turing machine. This model is based on the extension of von Neumann’s quantum logic to partial states, defined here as sub-probability measures on the Hilbert space...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Extending Certain Transformation Group Actions in Separable, Infinite-dimensional Frechet Spaces and the Hilbert Cube

A theorem of V. L. Klee, Jr. [9] asserts that any homeomorphism between two compact sets in a separable, infinite-dimensional Hilbert space can be extended to a homeomorphism of the entire space onto itself. Since it has recently been shown ( [ l ] , [5] and [6]) that all separable, infinite-dimensional Frechet spaces are homeomorphic (a Frechet space being a metrizable, complete, locally conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009