Gleason’s Theorem for non-separable Hilbert spaces: Extended abstract
نویسنده
چکیده
The probelm of generalizing Gleason’s theorem to the non separable case arose in correspondence with Paul Chernoff. I am very grateful to him for suggesting this charming problem to me. Let H be a Hilbert space. The coefficient field K of H can be either the reals or the complexes. We let P(H) denote the collection of all closed subspaces of H. A Gleason measure on H is a map μ : P(H) → [0, 1] satisfying the following conditions:
منابع مشابه
An extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملLaboratory Games and Quantum Behaviour: The Normal Form with a Separable State Space
The subjective expected utility (SEU) criterion is formulated for a particular four-person “laboratory game” that a Bayesian rational decision maker plays with Nature, Chance, and an Experimenter who influences what quantum behaviour is observable by choosing an orthonormal basis in a separable complex Hilbert space of latent variables. Nature chooses a state in this basis, along with an observ...
متن کاملAn Extension of Gleason’s Theorem for Quantum Computation
We develop a synthesis of Turing’s paradigm of computation and von Neumann’s quantum logic to serve as a model for quantum computation with recursion, such that potentially non-terminating computation can take place, as in a quantum Turing machine. This model is based on the extension of von Neumann’s quantum logic to partial states, defined here as sub-probability measures on the Hilbert space...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملExtending Certain Transformation Group Actions in Separable, Infinite-dimensional Frechet Spaces and the Hilbert Cube
A theorem of V. L. Klee, Jr. [9] asserts that any homeomorphism between two compact sets in a separable, infinite-dimensional Hilbert space can be extended to a homeomorphism of the entire space onto itself. Since it has recently been shown ( [ l ] , [5] and [6]) that all separable, infinite-dimensional Frechet spaces are homeomorphic (a Frechet space being a metrizable, complete, locally conve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009